不定积分的计算-公式
目录
需要记住的公式
三角函数公式 (非常重要)
和角公式
$$
\begin{align*}
\sin(a \pm b)=\sin a\cos b \pm \cos a\sin b \\
\cos(a \pm b)=\cos a\cos b \mp \sin a\sin b \\
\tan(a\pm b)=\frac{\tan a \pm \tan b}{1 \mp \tan a\tan b} \\
\implies\cot(a\pm b)=\frac{\cot a\cot b \mp 1}{\cot a \pm \cot b} \\
\end{align*}
$$
积化和差公式
$$
\begin{align*}
& \sin \alpha x \cos\beta x = \frac{1}{2} [\sin (\alpha x + \beta x) + \sin (\alpha x - \beta x) ] \\
& \cos \alpha x\cos\beta x= \frac{1}{2} [\cos (\alpha x + \beta x) + \cos (\alpha x - \beta x) ] \\
& \sin \alpha x\sin\beta x= -\frac{1}{2} [\cos (\alpha x + \beta x) - \cos (\alpha x - \beta x) ] \\
\end{align*}
$$
2倍角公式
$$
\begin{align*}
& \sin 2x =2 \sin x \cos x \\
& \cos 2x = \cos^2x-\sin^2x=1-2\sin ^2x =2\cos ^2x-1 \\
& \tan 2x = \frac{2\tan x}{1- \tan ^2 x} \\
& \cot 2x = \frac{2\cot ^2 x -1 }{2 \cot x}
\end{align*}
$$
半角公式
$$
\begin{align*}
& \tan \frac{x}{2}=\frac{2\sin \frac{x}{2}\cos \frac{x}{2}}{2\cos ^{2} \frac{x}{2}}=\frac{\sin x}{1+ \cos x }=\frac{\tan x}{secx+1}
\end{align*}
$$
降幂公式
$$
\begin{align*}
\sin ^2x = \frac{1-\cos{2x}}{2} \\
\cos^2x = \frac{1+\cos{2x}}{2} \\
\end{align*}
$$
反三角恒等式
$$
\begin{align*}
& arc \cos x +arc \cos (-x) =\pi \\
& arc \cos x+arc \sin x =\frac{\pi}{2} \\
&| \arctan x-\arctan\left( -\frac{1}{x} \right) | =\frac{\pi}{2} \\
& \arctan x + arc \cot x =\frac{\pi}{2} \\ \\ \\
&\arcsin x \pm \arcsin y =\arcsin(x\sqrt{ 1-y^{2} } \pm y\sqrt{ 1-x^{2} }) \\
&arc \cos x \pm arc \cos y =arc \cos(xy \mp \sqrt{ 1-x^{2} } \sqrt{ 1-y^{2} }) \\
&\arctan x \pm \arctan y =\arctan\left( \frac{x \pm y}{1 \mp xy} \right) \\
&arc \cot x \pm arc \cot y=arc \cot\left( \frac{xy \mp 1}{x \pm y} \right) \\ \\
&下面推导过程; \\
& 如令\arcsin x =a,\arcsin y=b,求a+b=?则先求sin(a+b), \\
&sin(a+b)=sin(\sin a\cos b+\cos b\sin a) \\
&=sin(\sin(\arcsin x)\cos(\arcsin y)+\cos(\arcsin x)\sin(\arcsin y)) \\
&=x\sqrt{ 1-\sin ^{2} (arc \sin y) }+ y \sqrt{ 1-\sin ^{2} (\arcsin x) } \\
&=x\sqrt{ 1-y^{2} }+y\sqrt{ 1-x^{2} } \\
&\implies a+b=\arcsin(x\sqrt{ 1-y^{2} }+y\sqrt{ 1-x^{2} })=\arcsin x+\arcsin y \\
&其他同理 \\
\end{align*}
$$
其它:
$$
\begin{align*} \\
1的等量代换(重要!) \\
1 & =\sin ^{2}x +\cos ^{2}x \\ \\
1 \pm sin x & = 1 \pm 2\sin \frac{x}{2} \cos \frac{x}{2} = \left( \sin \frac{x}{2} \pm \cos \frac{x}{2} \right) ^2 \\ \\
sec ^{2}x - \tan ^{2}x & =1 \implies secx +\tan x =\frac{1}{secx -\tan x }\\
\csc ^{2}x -\cot ^{2}x & =1 \implies \csc x +\cot x =\frac{1}{\csc x-\cot x } \\
sec x=\frac{1}{\cos x } & = \frac{1}{1-2 \sin ^{2} \frac{x}{2}} =\frac{1}{1-2 \tan ^{2} \frac{x}{2} \cos ^{2} \frac{x}{2}} \\
& =\frac{sec^{2}x}{sec^{2}x-2 \tan ^{2} \frac{x}{2}} = \frac{1+\tan ^{2} \frac{x}{2}} {1-\tan ^{2} \frac{x}{2}} \\
\tan x +sec x & = \frac{2\tan \frac{x}{2}}{1-\tan ^{2} \frac{x}{2}} +\frac{1+\tan ^{2} \frac{x}{2} }{1-\tan ^{2} \frac{x}{2}}=\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}} \\ \\
| \tan x +sec x | & = \sqrt{ sec^{2}x + 2secx\tan x +\tan ^{2}x } = \sqrt{ 1+2\tan ^{2}x +2sec x\tan x } \\
&=\sqrt{ 1+2\tan ^{2}x +2 \tan x \cdot \frac{1}{\cos x} } = \sqrt{ \frac{1+\sin ^{2}x+2\sin x }{\cos ^{2}x} } \\
&=\sqrt{ \frac{(1+\sin x)^{2} }{1-\sin ^{2}x}} \\
&= \sqrt{ \frac{1+\sin x}{1-\sin x} }\\\\
同理:| cscx+\cot x | & = \sqrt{ \frac{1+\cos x}{1-\cos x} } \\ \\
\end{align*}
$$
立方和差
$$
\begin{align*}
x^3 - a^3=(x-a)(x^{2}+ax+a^{2}) \\
x^3 + a^3=(x+a)(x^{2}-ax+a^{2})
\end{align*}
$$
欧拉公式+棣莫佛公式
(Moivre’ s theorem) 可用于次数很高的三角函数的不定积分(关键点是二项式定理展开熟练!)
$$
\begin{align*}
欧拉公式:e^{ ix } & =\cos x+i\sin x \\
变形:令z=e^{ ix } , 则\frac{1}{z} &= \cos x -i\sin x \\
z+\frac{1}{z} & =2\cos x \\
z-\frac{1}{z} & =2i \cdot \sin x \\\\
再由棣莫佛公式:z^{n}=(e^{ ix })^{n} & =\cos nx +i\sin nx \\
\implies z^{n}+\frac{1}{z^{n}} & =2\cos nx \\
z^{n}-\frac{1}{z^{n}} & =2i \cdot \sin nx \\
\implies \sin nx & =\frac{z^{n}-\frac{1}{z^{n}}}{2i} =\frac{e^{inx}-e^{-inx}}{2i} \\
\cos nx & =\frac{z^{n}+\frac{1}{z^{n}}}{2} =\frac{e^{inx}+e^{-inx}}{2} \\
\end{align*}
$$
基本积分表及扩展
需要熟记
幂函数
$$
\begin{align*}
\int x^\alpha \, dx = \begin{cases}
\frac{x^{\alpha+1}}{\alpha+1} +C, & \alpha \neq -1 \\
\ln x+C, & \alpha =-1 \\
\end{cases} \\
\int \frac{1}{x^{\beta}} \, dx =\frac{1}{1-\beta} \frac{1}{x^{\beta-1}}+C
\end{align*}
$$
对数函数
$$
\int \ln x \, dx= x(\ln x -1) +C
$$
指数函数
$$
\begin{align*}
\int a^{x} \, dx & =\frac{a^{x}}{\ln a}+C \\
特别: \int e^{ x }\, dx & = e^{ x }+C \\
\end{align*}
$$
三角函数
$$
\begin{align*}
\int \sin x \ dx & =-\cos x+C \\
\int \cos x \, dx & = \sin x+C \\
\int \tan x \, dx & = -\ln\mid cosx| +C \\
\int \cot x \, dx & =\ln \mid \sin x|+C \\ \\ \\
\int sec^2x \, dx & =\tan x+C \\
\int csc ^2 x \, dx & =-\cot x+C \\
\int secx \tan x \, dx & =secx+C \\
\int \csc x \cot x \, dx & =-\csc x+C \\
\\
正割,余割 \\
\int \csc x \, dx & = \int \frac{- \csc x(\csc x+\cot x)}{\csc x+\cot x} \, dx =-\ln \mid cscx+\cot x|+C \\
& = ln|\csc x -\cot x|+C\\ \\
也可 &= -\frac{1}{2} ln \frac{1+\cos x}{1-\cos x } +C\\
也可&=-\ln | \frac{{1+\cos x}}{\sin x} |+C= -\ln| \frac{{2\cos ^{2} \frac{x}{2}}}{2\sin \frac{x}{2}\cos \frac{x}{2}}|+C =\ln |\tan \frac{x}{2}|+C \\
也可&= \frac{dx}{\sin x}=\frac{dx}{2\sin \frac{x}{2}\cos \frac{x}{2}} = \frac{{sec ^{2} \frac{x}{2}}}{\tan \frac{x}{2}} d\left( \frac{x}{2} \right) =\ln |\tan \frac{x}{2}|+C \\ \\
\int secx \, dx & = \int \frac{ sec x (sec x+\tan x)}{sec x+\tan x} \, dx = \ln |secx+\tan x|+C \\
& =\ln |\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}| +C\\ \\
也可& = -\ln| secx-\tan x|+C \\
也可 & =\frac{1}{2} \ln \frac{1 +\sin x}{1-\sin x} +C\\ \\
双曲正余弦 \\
\int chx \, d & = shx +C \\
\int shx \, dx & =chx+C \\
\end{align*}
$$
反三角函数
$$
\begin{align*}
\int \frac{1}{\sqrt{ 1-x^{2} }} \, dx & =\arcsin x+C_{1} \\
& = -arc \cos x +C_{2} \\
ps: arc \cos x+arc \sin x & =\frac{\pi}{2} \\ \\
\int \frac{1}{1+x^{2}} \, dx & =arc \tan x +C_{1} \\
& = -arc \cot x+C_{2}
\end{align*}
$$
分母,分子带根号
PS:其中的a>0
$$
\begin{align*}
\int \frac{1}{\sqrt{ a^{2}-x^{2} }} \, dx & = arc \sin \frac{x}{a} +C_{1} \\
& = -arc \cos \frac{x}{a} +C_{2} \\
\int \frac{1}{\sqrt{ x^{2} ± a^{2} }} \, dx & = \ln |x+\sqrt{ x^{2} ± a^{2} }|+C \\ \\ \\ \\
\int \sqrt{ a^{2}-x^{2} } \, dx & \overset{v取x}{=} x\sqrt{ a^{2}-x^{2} } + \int x \cdot \frac{x}{\sqrt{ a^{2}-x^{2} }} \, dx \\
& = x\sqrt{ a^{2}-x^{2} }+ \int \frac{-(a^{2}-x^{2})+a^{2}}{\sqrt{ a^{2}-x^{2} }} \, dx \\
& =x\sqrt{ a^{2}-x^{2} }-\int \sqrt{ a^{2}-x^{2} } \, dx +a^{2}\int \frac{1}{\sqrt{ a^{2}-x^{2} }} \, dx \\
\implies \int \sqrt{ a^{2}-x^{2} } \, dx & =\frac{1}{2} \left( x\sqrt{ a^{2}-x^{2} }+ a^{2}arc \sin \frac{x}{a} \right)+C \\ \\
同理: \int \sqrt{ x^{2} \pm a^{2} } \, dx & \overset{v取x}{=} \frac{1}{2}(x\sqrt{ x^{2} \pm a^{2} } \pm a^{2} \cdot \ln \mid x+\sqrt{ x^{2} \pm a^{2} }|) +C \\
\end{align*}
$$
分母不带根号的平方和,差
$$
\begin{align*}
\int \frac{1}{a^{2}+x^{2}} \, dx & =\frac{1}{a} arc \tan \frac{x}{a} +C \\
\int \frac{1}{x^{2}-a^{2}} \, dx & =\frac{1}{2a} \ln|{\frac{x-a}{x+a}}|+C_{1} \\
&= -\frac{1}{2a} ln | \frac{x+a}{x-a} |+C_{2} \\
\end{align*}
$$
分式
$$
\begin{align*}
\int \frac{1}{(x+a)(x+b)} \, dx =\frac{1}{b-a} \int \left( \frac{1}{x+a} - \frac{1}{x+b} \right) \, dx
\end{align*}
$$
其它复杂积分公式
组合积分法
$$
\begin{align*}
\int e^{ax}\cos bx \, dx & =\frac{e^{ax}}{a^{2}+b^{2}}(a\cos bx+b\sin bx)+C (ab ≠0) \\
\int e^{ax}\sin bx \, dx & =\frac{e^{ax}}{a^{2}+b^{2}}(a\sin bx-b\cos bx) \\
& 记忆: \frac{e^{ax}}{a^{2}+b^{2}}(指数的系数 × 三角函数 - 三角函数的导数)
\end{align*}
$$
递推式
$$
\begin{align*}
I(m,n) & =\int \cos ^{m}x \sin ^{n}x \, dx \\
& = \frac{\cos ^{m-1}x\sin ^{n+1}x}{m+n}+\frac{m-1}{m+n}I(m-2,n) (m\geq 2,n\geq 0) \\
&=\frac{\sin ^{n-1} \cos ^{m+1}}{m+n}+\frac{n-1}{m+n}I(m,n-2)(n\geq 2,m\geq 0)
\end{align*}
$$
收录于 合集・数学分析 4